Could there be life on other planets?

There’s still so much we don’t know about the universe—but engineers and scientists around the world are working together on a superhero telescope that will see vastly farther than ever before. In fact, it will record light given off billions of years ago—essentially acting as a time machine.
Try to imagine yourself as a dot in our immense universe, surrounded by space dust, areas of deep darkness, and fiery stars fanning out in all directions. It’s mind-boggling—but cool! For as long as humans have existed, we have been mesmerized by the universe and the questions it stirs up: How big is the universe? Is there life on other planets? How did the universe even begin—and is it changing? Read on to find out how an amazing team of diverse scientists are working together to find answers.

A CLOSER LOOK
One of the oldest ways of exploring our galaxy is through the use of telescopes. When you were little, you may have made pretend telescopes out of paper towel rolls and aimed them at the ceiling. Real telescopes use curved mirrors to gather and focus light from the night sky. The first known telescope to be pointed at the sky was designed in 1609 by an Italian scientist known today by his first name, Galileo. He was able to detect moons orbiting Jupiter, leading him to the conclusion that not all celestial objects revolve around Earth—upending astronomy at the time.

Over time, astronomers and scientists built bigger, more complex instruments to explore space. More sophisticated telescopes have led to the discovery of fundamental facts about our universe. Before telescopes, close observation led to theories that planets orbit (or go around) our Sun, but telescopes proved it. Telescopes demonstrated that stars are not solid, they are spheres of gas—and our closest star is the Sun. Telescopes also proved that there are hundreds of billions of stars in our galaxy, and hundreds of billions of galaxies in the universe! More sensitive telescopes showed us that practically every star has at least one planet around it—and many have multiple planets, like our solar system. Telescopes also helped us uncover the scale of the solar system—how big each planet is, and how far it is from other planets and the sun.

But how did the first stars and planets form? Are there other habitable planets out there?

NASA’S WEBB SPACE TELESCOPE

MIRROR
This perfectly smooth mirror consists of 18 separate pieces that can unfold after launch to about 21 feet in length. Each mirror is made of a lightweight yet strong material called beryllium, which can hold its shape in the extreme cold of space. The mirrors are coated in a microscopically thin layer of gold to better reflect infrared light.

SUNSHIELD
The five-layered sunshield is the size of a tennis court! Its job is to minimize the heat from the sun—by more than a million times!

CRYOCOOLER
Basically a sophisticated refrigerator in space, the cryocooler behind the mirror uses helium gas and advanced machinery to cool the MIRI (one of the instruments that observes space) to -448 degrees Fahrenheit. (That’s COLD!)
Are we alone in the universe? To search for answers, NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA) brought together a diverse group of scientists and engineers—from all backgrounds and areas of expertise—to invent and build the most sophisticated telescope ever made: NASA’s Webb Space Telescope.

It took thousands of engineers and scientists working together for years to build NASA’s Webb Space Telescope.

Check out the unique features that make this telescope a jaw-dropping feat of engineering. The team must be meticulous with construction and testing because the stakes are high—if even the slightest thing goes wrong during or after launch into space, the whole mission could fail!

NASA’s Webb Space Telescope is expected to launch into space from French Guiana (in South America). With the largest light-reflecting mirror ever launched into space, it will be 100 times more powerful than our current largest space telescope, Hubble! NASA’s Webb Space Telescope will be able to observe bodies previously unseen by other telescopes—including some that formed billions of years ago. Understanding how early galaxies formed can tell us more about how our own galaxy began. The telescope will be able to show scientists how far other galaxies are from each other—and from our galaxy—by measuring something called redshift, the phenomenon in which an object’s light waves turn redder as they stretch farther and farther away.

If this sounds complex, just remember: These scientists grew up just like you—filled with curiosity, and working hard to find answers that could change the world.

INFRARED LIGHT
The human eye can perceive certain wavelengths as colors. But other waves, like X-rays and infrared light, are invisible to us. Objects that have heat (like stars and planets) give off some infrared radiation, making them detectable by Webb. (Fun fact: Your remote control uses infrared waves to invisibly control your TV!)

CAMERAS AND SPECTROMETERS Webb’s four instruments (behind the mirror) can record extremely faint signals and measure different light spectra. The NIRSpec instrument can observe up to 100 objects at a time!
Get to Know Your Universe

The universe is far too enormous to measure in miles. What do scientists do instead?

When you flip a light switch, light seems to fill the room instantly. Light moves faster than anything else in the universe, at 186,000 miles per second. That’s astonishingly fast—but it’s not instantaneous. In fact, it takes 8 minutes for a beam of light to travel the 93 million miles from the Sun to your eyes. Over vast distances, you can wait years and years to see the light from faraway stars.

Scientists use a measure of distance called a light-year, or the distance light can travel in a year. Our nearest galactic neighbor, the Andromeda Galaxy, is 2.5 million light-years away—so the light we see from it is reaching us now, but it left the Andromeda Galaxy 2.5 million years ago. That means we’re seeing the Andromeda Galaxy as it was 2.5 million years ago. We don’t know what it looks like now because that new light hasn’t reached us yet.

This means that if you look far enough away, you can see light from billions of years ago. Read on to find out why that’s especially important to the mission of NASA’s Webb Space Telescope, which will allow humans to see farther than ever before.

Think you have a long to-do list? Check out the ambitious goals scientists have for NASA’s Webb Space Telescope:

Time travel: Using infrared vision, NASA’s Webb Space Telescope will act as a “time machine” by looking so far away that it will detect light from 13.5 billion years ago to see the first stars and galaxies forming in the early universe. Incredible!

How stars and planets are born: NASA’s Webb Space Telescope will be able to see through and into massive clouds of dust in greater detail than even the Hubble Space Telescope! These dust clouds are where stars and planetary systems are formed.

Galaxy formation: To help reveal how galaxies form over billions of years, NASA’s Webb Space Telescope will detect extremely faint infrared signals so astronomers can compare the earliest galaxies to today’s galactic structures, like ellipticals and grand spirals.

And there’s one last, special goal...check it out on page 6!
B y combining math and observation, astronomers have determined that the universe began 13.8 billion years ago in a mind-bendingly smaller volume than what we observe now. A remarkable event known as the Big Bang caused the universe to begin expanding dramatically. And scientists have found evidence that the universe still continues to expand, right now, as you’re reading these pages!

In the first second after the Big Bang, the temperature was a toasty 10 billion degrees Fahrenheit, and the universe was a “cosmic soup”: a dense mix of tiny particles of matter, energy, and light. As this “soup” spread out and took up more space, it cooled down. (Just like if you spilled hot soup on the floor, it would cool down as it spread out.)

The tiny particles began to combine to form atoms; atoms grouped together to form stars and galaxies. The first stars created groups of atoms called molecules. More stars were born! Stars died. Asteroids, comets, planets, and black holes formed too! And through it all, galaxies continue to move away from each other, as the universe continues to expand outward.

“If you’d asked an earlier version of me about the (real!) planets with metal snow or where the surface temperature would melt steel, I might not have believed it. I sometimes think my imagination is more limited than the universe, so there are even more interesting surprises waiting!”

—Dr. Prabal Saxena, Astronomer, NASA

SPOTLIGHT
THE HUBBLE TELESCOPE

In the 1970s, the National Aeronautics and Space Administration—NASA—and the European Space Agency—ESA—began working as a team to build the most advanced telescope yet. They called it the Hubble Space Telescope, named for astronomer Edwin Hubble. In 1990, five astronauts set out on the space shuttle Discovery to bring the Hubble Space Telescope to its destination: 380 miles above Earth, where it has been ever since, taking startlingly beautiful images from outer space and furthering our understanding of the universe.
Astronomical Discoveries

One planetary system scientists are eager to learn even more about is called the TRAPPIST-1 system, which is believed to have seven Earth-sized planets orbiting its central star 39 light-years away.

Using a combination of telescopes, astronomers discovered that most of the planets in this system are rocky and solid (versus being made of gases like hydrogen or helium). This is a big deal because a rocky planet could hold water, a “building block of life.” Scientists generally search for liquid water to determine if a planet could sustain life. So far, Earth is the only planet we know of that has liquid water on its surface (though some other planets have ice). We haven’t observed signs of life anywhere else yet, but the universe is vast and we have searched only a tiny bit of it.
One of the most exciting astronomical discoveries of the last few years is that three of the TRAPPIST-1 planets are orbiting in the possible **habitable zone**, where rocky planets are most likely to hold liquid water (like on Earth). This is a remarkable possibility! Could there be signs of life, or “fingerprints of life” on any of these planets? Without leaving Earth, scientists will use NASA’s Webb Space Telescope to search the **atmospheres** of faraway planets for certain molecules, like oxygen, that sustain life!

But NASA’s Webb Space Telescope won’t just study objects in other star systems and galaxies—it will explore our solar system, too. It will observe planets like Mars and dwarf planets like Pluto and Eris, as well as asteroids, comets, and Kuiper Belt Objects (which make up the large ring circling our solar system). It will tell us about weather on Mars and Saturn, identify the minerals in asteroids, and much more. By studying our cosmic neighbors, we can get to know our universe better.

“**The possibility that we could one day be living on the surface of another planet is truly inspiring.**”
—Dr. Geronimo Villanueva, NASA Planetary Scientist

LOOKING AHEAD

Once NASA’s Webb Space Telescope launches into space, it will conduct some 180 maneuvers to unfold itself, a process that takes about two weeks. (Wow!) Scientists and curious people everywhere are looking forward to celebrating this revolutionary feat of engineering. And then—breakthrough cosmic discoveries await!
NORA LUETZGENDORF
Instrument Scientist, European Space Agency

It was Nora Luetzgendorf’s grandfather who first got her into astronomy. “He’d tell me about black holes at the breakfast table,” she recalls. Now, she and her team are making sure that the NIRSpec instrument on NASA’s James Webb Space Telescope will be ready for scientists to use once the telescope is launched—and she’s eager for what we’ll find out. “I’m mostly interested in black holes, and JWST will observe the most massive and the oldest black holes in the universe.”

Luetzgendorf’s road to scientific success was “100 percent worth it,” she says. “When I decided to study physics I had some people (even in my own family) telling me that this might be too hard, and that many people fail. Don’t listen to things like that. I had to work hard, but I love what I do so much.”

Her favorite part of the job is the hands-on aspect, “like when we stick the telescope in a giant fridge and simulate space in the different NASA centers.”

DANNY MANUEL
Mechanical Engineer, Northrop Grumman

Growing up, there was one thing Danny Manuel loved more than anything else: playing basketball with his friends. But he was also interested in math, which ultimately led him to become a mechanical engineer. “A lot of kids used to complain about learning so much math, or thought they’d never use it again,” he says. “The way I saw it, math trains us to solve problems critically.”

Now, he compares his role as a mechanical engineer on Webb to “putting together LEGO sets, but with huge spacecraft components.” His team spends a lot of time on testing, to ensure that everything will go well in space. “We’ve only got one chance to get this right!” he says.

Manuel hopes Webb will shed light on whether we’re alone in the universe and what caused the Big Bang to happen the way that it did. And looking ahead, he believes scientific discovery will shape our lives. “It’s an incredibly exciting time to be alive,” he says. “The future is waiting to be built by young, sharp minds.”

NESTOR ESPINOZA
Astronomer, Space Telescope Science Institute (STScI)

From the time Nestor Espinoza was in 7th grade, science has always seemed wondrous. “I found it a bit magical that one could predict things like the movement of the world around us, using math,” he says.

His biggest inspiration came from his physics teacher. “Before she reached out to me, I thought I had no chance of doing science, because I didn’t fit in to the ‘TV scientist’ stereotype,” he says. “And growing up in Chile, I had no idea science was a thing I could do for a living. But she told me that I could not only be a scientist—she believed I could actually be a pretty good one.”

In his job, Espinoza makes sure that instruments onboard Webb will be able to extract all kinds of signals from the universe. His particular scientific focus: how scientists can use Webb to study distant exoplanets.

“Anyone can do science,” he insists. “Science is for everyone. You don’t need to be a straight-A student or a genius. You—yes, you—can become a scientist.”

AMBER STRAUGHN
Astrophysicist, NASA

Amber Straughn grew up in rural Arkansas where the night sky was very dark, setting off her curiosity about the stars from a young age. Now, she researches how stars form in distant galaxies, how galaxies evolve, and how gigantic black holes affect galactic growth.

There are still many unanswered questions. Straughn explains, “We are missing a crucial piece of the story of how galaxies change over time: seeing how it all got started. With Webb, we hope to see the very first galaxies born after the Big Bang—the first page in the cosmic book. I think the universe is full of surprises we’ll discover with Webb.”

Her advice for teens and professionals alike? Don’t be afraid to ask for help! “One scientific stereotype I really dislike is the one of the ‘lone genius’ working away at their research…this just doesn’t happen. Diverse teams of people who think about things in different ways inevitably come up with more creative ideas.”