Adventures in Math

Real-world math lessons + activities about money

Grades 6–8

INSIDE THIS PDF

<table>
<thead>
<tr>
<th>PAGES</th>
<th>CONTENT</th>
<th>SKILLS</th>
</tr>
</thead>
</table>
| 2–3 | **Lesson**: Understanding and Calculating Sales Tax
› **Activity Sheet**: Calculating taxes | Percentages |
| 4–6 | **Lesson**: Saving Money by Finding the Better Buy
› **Activity Sheet**: Word problems | Multiplication, division, and percentages |
| 7–13 | **Lesson**: Saving Money for Your Future
› **Activity Sheet**: Financial planning and interest game | Multiplication, calculating interest |

Visit scholastic.com/regions for a digital game and online flash cards.

Use these materials as supplements when you teach:

Math • Money • Financial literacy

For more free lessons and activities, visit scholastic.com/extracredit.
Lesson | Understanding and Calculating Sales Tax

Explore the concept of sales tax—and why where you live affects the cost of things you buy.

Objective
Students will calculate percentages to figure out sales tax, and compare shopping costs based on different tax rates.

Standards
Common Core Math
6.RP.A.3C Find a percent of a quantity; solve problems involving finding the whole, given a part and the percent.

Time
40 minutes

Materials
- Figure Out the Sales Tax! activity sheet
- Scholastic Study Jams video about percents and sales tax: bit.ly/2OPRjIN
- Number cubes
- Sample receipt image, such as at bit.ly/37nop9x
- Calculators (optional)

1. **Tell** the story of three cousins, Pam, Cam, and Sam, who all bought the same video game for the same price: $25. But they paid three different total amounts because of where they live. Ask: How could this be? Activate prior knowledge by having students recall sales receipts they’ve seen. Have they ever bought an item and found there was an extra cost?

2. **Introduce** the concept of sales tax by showing a sample receipt. Point out the subtotal and tax lines, and explain that sales tax is a percentage of the price that is added to the original cost. Each state decides how much sales tax to charge on certain items; states use the money to pay for public services like roads and schools. Some states also have city or other local sales taxes added to the state sales tax.

3. **Demonstrate** how to calculate sales tax from different states on the game:
 - Pam: Maine sales tax is 5.5%, which adds $1.38 for a total price of $26.38.
 - Step 1: $25 \times 0.055 = $1.375.
 - Step 2: $25 + $1.375 = $26.38 rounded.
 - Cam: Indiana sales tax is 7%, which adds $1.75 for a total price of $26.75.
 - Sam: New Orleans, Louisiana, has state taxes and local taxes that add up to a sales tax percentage of 9.45%, which adds $2.36 for a total price of $27.36.

4. **Show** Scholastic Study Jams video on calculating percents and sales tax.

5. **Have** students complete the Figure Out the Sales Tax! activity sheet. Then discuss to reinforce concepts. Ask: For every dollar, sales tax adds ___ cents in our city, so what amount is added for every 10 dollars? (Remember, if sales tax is 5%, that means $0.05 for every dollar.) When we know the tax amount paid (say, $21), how can we use proportional reasoning to find the original cost?

6. **Assess** with an exit slip. Tell students: The clerk at a small store calculated my receipt by hand. I bought items for $1, $5, and $4. The sales tax is 5%. The clerk charged me $15. Have students write a sentence on whether this “feels right” using mental math, and how the clerk should fix the error. (Answer: Sales tax on $10 is $0.50, but the clerk made a place-value error and added $5 to the subtotal. The correct total is $10.50.)

Extensions
Students can build their knowledge of common financial literacy terms with our digital flashcards, which include definitions and examples. Available in study mode and quiz mode at scholastic.com/regions/cashcards.
Figure Out the Sales Tax!

Find the sales tax on different items—then learn a quick mental math strategy for calculating percentages.

Roll a number cube and write the number in the sales tax percentage column. Roll the number cube again until you have filled the column. Use a calculator to find how much sales tax will be added, and the total cost.

<table>
<thead>
<tr>
<th>Item</th>
<th>Item Cost</th>
<th>Sales Tax %</th>
<th>Sales Tax Amount</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video game</td>
<td>$39.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set of markers</td>
<td>$11.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skateboard</td>
<td>$55.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set of books</td>
<td>$44.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Take it further. Write your answers on the lines below.

1 What is the amount of a 1% sales tax on the video game that costs $39.00? _______________________

2 What is 1% of the $11.00 markers? ________________________

3 What pattern do you observe? ________________________

TIPS

- Use mental math to quickly find 1% of a number: Move the decimal point two spaces to the left, which is equivalent to dividing the number by 100. Once you have 1%, you can double it to find 2%, etc.

- To double-check that you’re moving the decimal in the correct direction, remember that you want to end up with a number that is smaller than the original number, since 1% is just a small amount of the whole.

4 Final challenge: Now that you can find a 1% and 2% sales tax, how can you use mental math to find 3%, 4%, 5%, and 6% tax?
Lesson | Saving Money by Finding the Better Buy

How can we use our financial resources effectively by calculating the better buy?

Objective
- Be able to make economically sound purchasing decisions by using unit pricing, calculating discounts, and analyzing fixed and variable costs

Time
60 Minutes

Materials
- Road Map to the Better Buy, printable
- Whiteboard
- Paper and pencils for calculations
- The Biggest Bang for Your Buck Game, optional

PART I—Making Purchasing Decisions by Calculating the Better Buy

1. Pose the following problem to the class: You are shopping for your favorite candy, horseradish-flavored gummy slugs, at a supermarket. A 12-ounce bag costs $5.16 while a 9-ounce bag costs $4.14. Which bag is the better buy?

2. Ask the class how they would determine the answer. Explain that calculating a **unit price** for each bag will make it easier to compare the value of the two bags. In this case, since both bags contain a given number of ounces, the unit price will be cost per ounce. Demonstrate that $5.16/12 = $0.43 per ounce while $4.14/9 = $0.46 per ounce, so the 12-ounce bag is the better buy. Point out that this is true, even though the out-of-pocket cost of the larger bag is greater.

3. Ask the class to determine the better buy in this situation: A regular-size 2.5-liter bottle of Cranky Cola costs $1.38 while the mega-size 4-liter bottle costs $1.98. Which is the better buy? (Note: If your class is ready to try this problem on their own, give them time to complete it, then review the answer. Otherwise, model the solution process for the class.) In this case, the unit price is cost per liter. For the regular-size bottle, the cost per liter is $1.38/2.5 = $0.552. For the mega-size bottle, the cost per liter is $1.98/4 = $0.495, so the mega-size bottle is the better buy.

4. Ask the class to independently (individually or in pairs) determine the better buy in this situation: Rent-a-Steamroller offers steamroller rentals for $27.99 per day or $209.93 per week. Which is the better buy? After students have had time to complete the problem, review the solution method. In this case, the unit price is cost per day. The weekly rental costs $209.93/7 = $29.99 per day, which is more than the daily cost of the daily rental, so the daily rental is the better buy.

5. To connect the math to real life, discuss with the class whether it’s always best to go with the better buy. Some reasons for not buying the better buy could include: lack of storage space, lack of available funds, perishability of or inability to use the larger quantity of the product, etc. Additionally, when comparing two different products of the same type, the one with the lower unit price might not match the more expensive product in quality, performance, life span, etc.

6. Distribute the worksheet to the class and have them complete section 1. Review the answers as a class.

PART 2: Saving Money With Discounts

1. Ask the class if they’ve seen merchandise "on sale" at stores, and how the sales work. Establish that, in the case of percentage-off sales, the percentage-off is multiplied by the original selling price to determine the amount of the discount. The **discount** is then subtracted from the original price to determine the new selling price.

2. Demonstrate an example to the class. A sweater originally costing $120 is selling for 30% off. First, convert 30% to the decimal .30 and multiply it by $120 to determine a discount of $36. The discounted selling price is the original price ($120) minus the amount of the discount ($36) or $84.

3. Ask the class to determine the new selling price of a $49 jar of wasabi-coated raisins on sale for 25% off. (Note: If your class is ready to try this problem on their own, give them time to complete it, then review the answer. Otherwise, model the solution process for the class.) First, convert 25% to the decimal .25 and multiply it by the original cost ($49) to find the discount of $12.25. The sales price is the original price of $49 minus the $12.25 discount or $36.75.

4. Ask the class to independently (individually or in pairs) determine the new selling price of a $149 fitness tracker on sale for 15% off. Convert the 15% to .15 and multiply it by the original cost ($149) to find the discount of $22.35. The original price ($149) minus the discount ($22.35) equals the on-sale price of $126.65.
If your class is ready for a challenge, ask them to calculate the percentage discount for an anvil originally priced at $575 that is on sale for $460. Since the amount of the discount equals the original selling price times the discount percentage, and the amount of the discount in this case is the original selling price minus the on-sale price ($575 - $460 = $115), then $575x = $115, where x = the discount percent. Divide both sides by 575, and the discount percent = .20 or 20%.

Distribute the worksheet to the class and have them complete section 2. Review the answers as a class.

PART 3: Taking Fixed and Variable Costs Into Account to Determine the Better Buy

Pose the following problem to the class: The two coffeehouses in town have live music and serve tasty coffee drinks. One of them, Mandrake’s, charges $5 for admission and $2.75 for each drink. The other coffeehouse, Petunia’s, charges $12 for admission and drinks are no extra charge. If you expect to drink three cups of coffee, which coffeehouse’s charge structure is the better buy?

Ask students to explain how they would calculate the answer. The cost at Mandrake’s is the $5 admission plus three drinks at $2.75 each ($8.25) for a total of $13.25. The cost at Petunia’s is a flat $12, so Petunia’s is the better buy. Explain that for either coffeehouse, there is an admission charge that doesn’t change, no matter how much coffee is consumed. This charge is considered a fixed cost because it doesn’t vary. The $2.75 cost per cup of coffee at Mandrake’s is considered a variable cost because it changes with the number of cups of coffee consumed.

Ask the class if Mandrake’s could ever be the better buy—the correct answer is: yes, if two or fewer cups of coffee are consumed. The admission charge of $5 plus two cups of coffee at $2.75 each ($5.50) equals $10.50, which is less than the $12 admission cost at Petunia’s.

Ask the class to determine the better buy for the following scenario: Your parents want to hire a clown for your little brother’s birthday. Jokey Joey charges $100 to appear plus $2.50 for each balloon animal he makes. Sunny Susie charges $140 to appear with no extra fee for balloons. Your brother has invited nine guests. Assuming he wants a balloon animal too, which clown is the better buy? Joey is a little less expensive than Susie for 10 children—his fixed cost of $100 plus variable costs of $25 for 10 balloon animals (10 times $2.50) is a total cost of $125. At $140, Susie is more expensive.

Distribute the worksheet to the class and have them complete section 3. Review the answers as a class.

Worksheet Answer Key

1. The 15-ounce size is $.27 per ounce and the 32-ounce size is $.26 per ounce, so the 32-ounce size is the better buy. 2. The six-pack of 16-ounce cans is a total of 96 ounces. $5.76/96 = $.06 per ounce. The 64-ounce bottle costs $2.56. $2.56/64 = $.04 per ounce, so the 64-ounce bottle is the better buy. 3. First, convert all quantities to a common unit of measure (inches). The regular size is 18 inches for $1.98 or $1.1 per inch ($1.98/1.8). The economy-size pack is 2 yards for $5.94. Two yards equals 72 inches and $5.94/72 = $.0825 per inch (8 1/4 cents), so the econo-pack is the better buy. 4. The usual rate for 8 nights would be 8 times $125 or $1,000 in total. If Darren offers a 27% discount, the discount would be .27 times $1,000 or $270 in all. You would pay $1,000 - $270 or $730 in all. 5. Nights 1, 2, and 3 are full price; 3 times $150 = $450. 50% off a $150 rate equals $75. Five nights (nights 4, 5, 6, 7, and 8) times $75 equals $375. $450 + $375 = $825. 6. Eight nights at the usual rate would be $800 (8 nights times $100). If you paid $560, the amount of the discount is $240 ($800 - $560). The percentage discount is $240/800 = 30%. 7. For an 8-day rental, Sam’s would charge a fixed fee of $200 plus variable costs of $400 (8 days at $50 per day). $200 + $400 = $600, which is more than Harry’s cost of $500, so Harry offers the better buy. 8. For a 6-day rental, Sam’s would charge $500 ($200 flat fee plus 6 days at $50), the same as Harry’s. For any rental less than 6 days, Sam’s is the better deal. 9. The cost of renting from Harry’s is $120 (4 bikes at a flat fee of $30). The cost of renting from Sam’s is $136 with per bike charges of $34 ($10 fee plus 8 days at $3 per day) times 4 bikes. So Harry’s has the better deal.
ROAD MAP TO THE Better Buy

You are planning an awesome road trip with your family! To have the money to do the things you really want to do, you’ve decided to seek out the better buy on your trip whenever possible.

Directions: Use a separate sheet of paper for calculations. Write your answers in the blanks.

Snacks at the Rest Stop

1. Your favorite snack, peanut butter pretzels, is available in a 15-ounce size for $4.05. The 32-ounce size sells for $8.32. Which size is the better buy? □

2. You’re getting thirsty! You can buy a six-pack of 16-ounce cans of juice for $5.76 or the 64-ounce bottle for $2.56. Which is the better buy? □

3. The regular-size pack of chocolate clusters is 18 pieces for $1.98. The economy size is 72 pieces for $5.94. Which is the better buy? □

Finding Discount Accommodations

4. Darren’s Discount Motel offers a 27% discounted rate for stays of a week or more. If you stay for eight nights and the usual rate is $125 per night, how much will you pay in total? □

5. Igloos Unlimited charges $150 per night, with a 50% discount for every night after the third night. If you stay for eight nights, how much will you pay? □

6. Hannah’s Houseboats, which usually charges $100 per night, is now offering a discount. If you stay eight nights and pay a total of $560, what percentage discount did you receive? □

7. Which deal is the most cost-effective? □

Deals on Wheels!

8. To reduce wear and tear on the family vehicle, you decide to rent a car. Happy Harry’s Rentals has a $500 fee for any rental up to eight days. Smilin’ Sam’s offers the same car for $200 plus $50 per day. Which deal is better? □

9. If you decide to rent a car for fewer days, which deal is better? □

10. Both Harry’s and Sam’s offer bikes for your family of four to rent. For eight days, Harry’s charges a flat fee of $30 per bike. Sam’s has a processing charge of $10 per bike, and then charges $3 per day per bike. Which is the better deal? □
Lesson | Saving Money for Your Future

What is the value of saving money?

Objective
• Explore saving money as a way to achieve their own financial goals
• Explore the difference between simple and compound interest
• Identify and discuss key terms and concepts associated with saving money

PART I—Engaging the Learner
Starter Questions:
• What reasons do people have for saving money rather than spending it immediately? (Saving for college, a new car, or a vacation)
• How do people save their money? (Answers might include putting money in a bank.)
• Can the money in a savings account make more money while in the account?

PART II—Activity: Simple Interest Vs. Compound Interest
Provide students with a visual representation that contrasts the yield of simple interest vs. the yield of compound interest. Review the SAVING MONEY—WORDS TO KNOW section of this lesson plan with students.

Materials (based on 20 students):
20 index cards, 100 large paper clips, 100 small paper clips

Give each student an index card. Have them label the cards “$100.” This represents their initial deposit of money (principal) into a savings account. Divide the class in half. Tell one half of the class that they will receive simple interest on their principal, and tell the other half of the class that they will receive compound interest (compounded annually) on their principal. This activity will simulate approximate interest growth over a period of five years at an interest rate of 5%. Tell the students that they will receive paper clips at the end of each year to represent the interest earned on their principal; large paper clips represent $5 and small paper clips represent $0.25. Please also explain to students that the interest rates used in these exercises are for illustrative purposes only and are not representative of current market rates.

To represent the interest at the end of Year 1, give every student a large paper clip. Students receiving simple interest should keep the paper clips separate from their index cards. Students receiving compound interest should attach the paper clips to their cards. This combined amount represents the new principal going into Year 2. For Years 2–5, the simple interest students should receive is one large paper clip for each year, always keeping the “interest” paper clips separate from their index card (principal). For students receiving compound interest, give students paper clips as follows:

Year 2: 1 large and 1 small paper clip (The small paper clips are representing interest that is being earned on previous interest which has become a part of the principal.)
Year 3: 1 large and 2 small paper clips
Year 4: 1 large and 3 small paper clips
Year 5: 1 large and 4 small paper clips

After the distribution of the Year 5 interest, have students find the total value of their accounts.

Ask the students to contrast the amount of interest earned with a simple interest account compared to an account receiving compounded interest. Ask them to explain how compounding yields a greater account value.

As a class, calculate the actual compound interest earned in this exercise, and then do the same using $10,000 as the principal so that students can see how compound interest can accumulate.

Compound interest earned with $100 beginning principal and 5% annual interest (rounded to the nearest penny):
Beginning principal = $100
Year 1 interest earned: $100 x 0.05 = $5
New balance = $105
Year 2 interest earned: $105 x 0.05 = $5.25
New balance = $110.25
Year 3 interest earned: $110.25 x 0.05 = $5.51
New balance = $115.76
Year 4 interest earned: $115.76 x 0.05 = $5.79
New balance = $121.55
Year 5 interest earned: $121.55 x 0.05 = $6.08
Final balance = $127.63 (Interest earned over five years = $27.63)
Simple interest earned on $100 at 5% interest for five years is $25.

Compound interest earned with $10,000 beginning principal and 5% annual interest (rounded to the nearest penny):

Beginning principal = $10,000

Year 1 interest earned: $10,000 x 0.05 = $500
New balance = $10,500

Year 2 interest earned: $10,500 x 0.05 = $525
New balance = $11,025

Year 3 interest earned: $11,025 x 0.05 = $551.25
New balance = $11,576.25

Year 4 interest earned: $11,576.25 x 0.05 = $578.81
New balance = $12,155.06

Year 5 interest earned: $12,155.06 x 0.05 = $607.75
Final balance = $12,762.81 (Interest earned over five years = $2,762.81)

Simple interest earned on $10,000 at 5% interest for five years is $2,500.

PART III—Activity: Savings Club

SAVING WITH A PURPOSE! is a simulation game that joins students together into “saving clubs” to pool their money to help fund new equipment for a local playground, ballpark, or recreation center.

Materials: SAVING WITH A PURPOSE! activity sheet, calculator, and 4 index cards or small pieces of paper for each student; 4 small boxes or baskets; 1 die (number cube)

Tell students that they will be “donating” imaginary money to fund a theoretical project that will benefit your community’s playground, ballpark, or other recreation center.

Have the students identify four projects that would benefit your community playground, ballpark, or recreation center, such as a new backstop for the baseball field or a new sliding board for the playground. Write the names of the four projects on the board. Label each small box or basket with the name of the project.

Tell the students that they will have the opportunity to contribute to any or all of the projects with an “imaginary” $20. The donated money will be used to open a savings account where it will earn compounded interest for six months before the money is donated to the imaginary community projects.

Have one volunteer for each project present a short speech about why students should contribute their money to that project.

Give each student four index cards or small pieces of paper. Have them label each card with “$5.” Have students deposit their $5 bills into the boxes for the projects they would like to support. They may put all of their money into one project or spread their money out among all four projects.

Divide the class into four groups; one for each project. The groups will monitor the growth of their savings account for six months.

Review the instructions for the activity from the worksheet. Explain to students that interest rates vary at times depending on many factors in the economy. Therefore, a die will be used to determine the interest rate for the activity to simulate the impact of various interest rates on savings accounts. Again, remind students that the interest rates used in these exercises are for illustrative purposes only and are not representative of current market rates.

As students begin to near the third month of interest calculations, announce that there has been a major improvement in the economy and all interest rates have been raised 1%. Have students complete the calculations for months 4–6 using the higher interest rate (e.g., a group has been using a 2% interest rate for months 1–3. Beginning with month 4, the interest rate is raised to 3%).

PART IV—Investment Wrap-Up Questions

What factors influence how much money can be earned when saving money? (Interest rates, the amount invested, and/or the amount of time the money is invested)

Do you think saving and investing money is wise? Why?

Bonus: How can inflation impact the value of the money you save?
SAVING MONEY—WORDS TO KNOW

Savings—money that is put into accounts, such as savings accounts and checking accounts. Money can usually be deposited and/or withdrawn at any time.

Principal—the initial amount of money that is put into a savings account.

Simple Interest—money earned for “loaning” money to a bank (putting your money in a savings account).

Compound interest—arises when interest is added to the principal, so that, from that moment on, the interest that has been added also earns interest. This addition of interest to the principal is called compounding.

Fun Fact: “Rule of 72” If you divide the number 72 by the interest rate of your savings account, you will be able to determine the approximate number of years that it will take to double your principal investment, e.g., you invest $1,000 in an account with an 8% interest rate (compounded annually). The account will be worth $2,000 in nine years. $72 \div 8 = 9$.
SAVING WITH A PURPOSE!

MISSION: Your mission as a Savings Club is to grow your group’s donations through a savings account for six months to help a project in your community.

1. What is your club’s community project? __

__.

2. Decide on a name for your Savings Club.
OUR CLUB’S NAME IS: __.

3. Elect a president for your club. The president’s role is to assign jobs and manage the other members of your club.

4. Prepare a short speech about your project to encourage your classmates to donate to your project. Identify key details about your project that contributors should know. Write them on the lines below. Then select one person to present the speech.

__.

5. Count the amount of money that has been donated to your club’s community project. Our club has $________ to put into a savings account.

6. Have the president of the club roll a die. The number on the die represents the percent interest that your club’s savings account will earn during the next six months. Remember to write the percent as a decimal when calculating interest. (Example: 4% is written as .04) The interest will be compounded monthly. Note: The interest rates used in this activity are for illustrative purposes only and are not representative of current market rates. Estimate the amount of money you think your club will earn in six months: $____________.

7. Use a calculator and page two of this worksheet to calculate and record the interest that your savings account will earn each month and to find the new balance at the end of each month.
Directions:
Use a calculator to calculate and record the interest that your savings account will earn each month and to find the new balance at the end of each month.

REGIONS BANK SAVINGS ACCOUNT

<table>
<thead>
<tr>
<th>Month</th>
<th>Interest</th>
<th>New Balance</th>
<th>Interest Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning</td>
<td>$________</td>
<td>$________</td>
<td>$________</td>
</tr>
<tr>
<td>Month 1</td>
<td>$________</td>
<td>$________</td>
<td>$________</td>
</tr>
<tr>
<td>Month 2</td>
<td>$________</td>
<td>$________</td>
<td>$________</td>
</tr>
<tr>
<td>Month 3</td>
<td>$________</td>
<td>$________</td>
<td>$________</td>
</tr>
<tr>
<td>Month 4</td>
<td>$________</td>
<td>$________</td>
<td>$________</td>
</tr>
<tr>
<td>Month 5</td>
<td>$________</td>
<td>$________</td>
<td>$________</td>
</tr>
<tr>
<td>Month 6</td>
<td>$________</td>
<td>$________</td>
<td>$________</td>
</tr>
<tr>
<td>FINAL BALANCE</td>
<td>$________</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CALCULATE EACH MONTH’S INTEREST HERE:
Balance \(\times \) Interest Rate = Interest Earned

\[
\begin{align*}
\text{Interest} & = \text{Balance} \times \text{Interest Rate} \\
& = \text{Balance} \times .\text{Rate} \\
& = \text{Interest Earned} \\
\end{align*}
\]

Celebrate Your Project!

Your Savings Club has chosen an imaginary project to help make your community great. On the back of this paper, create a mini-poster or flyer to illustrate your project. Include your Savings Club name and show how the money your group is raising will be used to help the community.
¡AHORRAR CON UN PROPÓSITO!

MISIÓN: Tu misión en el Club del Ahorro es aumentar las donaciones del grupo a través de una cuenta de ahorros seis meses a fin de ayudarle a un proyecto de tu comunidad.

1. ¿Cuál es el proyecto comunitario de tu club?
 __
 __
 __.

2. Piensa en un nombre para tu Club del Ahorro.
 NUESTRO CLUB SE LLAMA: ________________________________.

3. Elije un presidente para tu club. La función del presidente es asignar tareas y dirigir a los demás miembros del club.

4. Prepara un breve discurso sobre tu proyecto para alentar a tus compañeros de aula a que hagan donaciones a tu proyecto. Identifica los detalles clave proyecto que deberían conocer los donantes. Escríbelos en los renglones de abajo. Luego, elige a una persona para que presente el discurso.
 __
 __.

5. Cuenta la cantidad de dinero que se ha recaudado para el proyecto comunitario de tu club.
 Nuestro club tiene $_________ para depositar en una cuenta de ahorros.

6. El presidente del club lanzará un dado. El número en el dado representa el interés porcentual que se obtendrá en la cuenta de ahorros club durante los próximos seis meses. Recuerda escribir el porcentaje en decimales al calcular el interés. (Por ejemplo: 4 % se escribe como 0.04). El interés se capitalizará mensualmente. Nota: Las tasas de interés utilizadas en esta actividad son con fines ilustrativos únicamente y no son representativas de las tasas actuales del mercado. Estima la cantidad de dinero que crees que ganará tu club en seis meses: $______________.

7. Utiliza una calculadora y la página dos de esta hoja de ejercicios para calcular y registrar los intereses que se ganarán en tu cuenta de ahorros cada mes, y para averiguar el nuevo saldo al final de cada mes.
Indicaciones: Utiliza una calculadora para calcular y registrar los intereses que se ganarán en tu cuenta de ahorros cada mes, y para averiguar el nuevo saldo al final de cada mes.

CUENTA DE AHORROS EN REGIONS BANK

<table>
<thead>
<tr>
<th>Mes</th>
<th>Interés</th>
<th>Nuevo saldo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$_________</td>
<td>$_________</td>
</tr>
<tr>
<td>2</td>
<td>$_________</td>
<td>$_________</td>
</tr>
<tr>
<td>3</td>
<td>$_________</td>
<td>$_________</td>
</tr>
<tr>
<td>4</td>
<td>$_________</td>
<td>$_________</td>
</tr>
<tr>
<td>5</td>
<td>$_________</td>
<td>$_________</td>
</tr>
<tr>
<td>6</td>
<td>$_________</td>
<td>$_________</td>
</tr>
</tbody>
</table>

CALCULA EL INTERÉS MENSUAL AQUÍ:

Saldo x tasa de interés = interés ganado

<table>
<thead>
<tr>
<th>Mes</th>
<th>Interés</th>
<th>Nuevo saldo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$_________ x 0.______ = $_________</td>
<td>$_________</td>
</tr>
<tr>
<td></td>
<td>$_________ x 0.______ = $_________</td>
<td>$_________</td>
</tr>
<tr>
<td></td>
<td>$_________ x 0.______ = $_________</td>
<td>$_________</td>
</tr>
<tr>
<td></td>
<td>$_________ x 0.______ = $_________</td>
<td>$_________</td>
</tr>
<tr>
<td></td>
<td>$_________ x 0.______ = $_________</td>
<td>$_________</td>
</tr>
</tbody>
</table>

SALDO FINAL $_________

¡Celebra tu proyecto!

Tu Club del Ahorro ha elegido un proyecto imaginario para ayudar a engrandecer a tu comunidad. Al dorso de esta hoja, crea un minipóster o folleto para ilustrar tu proyecto. Incluye el nombre de tu Club del Ahorro y muestra cómo se utilizará el dinero que está recaudando tu grupo para ayudar a la comunidad.